ABSOLUTE ELECTRODE POTENTIALS IN DIMETHYL SULPHOXIDE–WATER MIXTURES AND TRANSFER FREE ENERGIES OF INDIVIDUAL IONS

MAHMOUD M. ELSEMONGY *

Chemistry Department, Faculty of Education, Umm Al-Qura University, Al-Taif City, Shihar (Saudi Arabia)

FIKRY M. REICHA

Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt) (Received 29 April 1986)

ABSTRACT

The standard potentials of $H_2|H^+$, $M|M^+$ (M = Li, Na, K, Rb and Cs) and Ag|AgX (X = Cl, Br and I) electrodes in seven aqueous solutions of dimethyl sulphoxide (DMSO), containing up to 60 wt.% DMSO, have been determined from EMF measurements of cells of the type: Ag|AgX|MX (m), S|M(Hg)|MX (m), W|AgX|Ag, or a variant of it, at 25°C by our recently reported procedure. The interest, validity and general applicability of this procedure in both aqueous protic and aprotic solvents have been demonstrated. The radii of solvated cations and their solvation extent in these media have been calculated. The standard Gibbs free energies of transfer of halogen acids and alkali metal halides as well as their constituent individual ions from water to each of the DMSO-water mixtures have been also computed. The results are interpreted and discussed.

INTRODUCTION

The energetics of ion solvation in the aqueous dipolar aprotic solvents have received increasing attention recently [1-6]. These are fundamentally important in that they constitute the basis of theories of ion-solvent interactions and provide an insight into the structural aspects of these solvents [3]. However, relatively little is known of ion-solvent interactions in such solvents. The thermodynamic basis of these interactions in many of the aqueous dipolar aprotic solvents, including dimethyl sulphoxide (DMSO)-water mixtures, is not yet established [2]. Thus, Khoo [3] reported free energies of transfer, ΔG_t^0 of X^- (X = Cl, Br and I) and H⁺ ions from water to some aqueous DMSO solutions, evaluated from studies on the

^{*} Author for correspondence.

TABLE I

DMSO (wt.%)		LiCl	NaCl	KCl	KBr	KI	RbCl	CsCl
5	This work	2.7	5.2	5.5	2.7	0.7	5.4	5.0
	[4]	2.6	5.3	5.3	_	-	5.3	4.1
10	This work	5.6	10.6	11.2	6.4	1.5	11.1	10.2
	[1]	5.3	10.4	10.8	6.5	1.4	11.0	10.3
	[2]	5.7	12.3	11.5	-		11.0	10.9
	[4]	5.5	10.7	11.2	-	_	11.2	8.3
20	This work	13.2	23.4	25.0	16.4	3.8	24.3	23.1
	[1]	13.6	23.4	24.1	-	-	23.7	23.1
	[2]	12.7	21.0	26.2	_	-	25.3	24.6
	[4]	11.9	22.5	24.9		-	24.3	19.0
30	This work	22.2	38.8	41.0	28.2	6.4	40.7	38.7
	[4]	19.6	37.3	41.5	-	-	40.8	33.2
40	This work	32.0	58.3	61.7	41.5	9.0	61.4	59.2
	[1]	32.0	58.1	61.7	-	-	59.7	59.3
	[2]	34.7	58.4	64.9		_	61.3	56.9
	[4]	28.6	55.0	61.6	-	_	61.6	51.5
50	This work	42.7	81.2	85.7	55.5	11.6	86.0	83.6
	[4]	38.6	76.3	85.8	-	_	84.1	74.5
60	This work	53.7	104.1	111.3	71.3	14.2	113.6	110.0
	[1]	_	104.3	-	_	_		
	[2]	53.8	103.0	111.5		.—	113.5	110.1
	[4]	51.4	100.6	114.2	-	-	114.8	100.0

Values of ΔE_m^0 (mV) for cells (A) in dimethyl sulphoxide-water mixtures at 25°C, and previously reported [1,2,4] values, for comparison

standard potentials of Ag |AgX |X⁻ electrodes in these solvents. Smits et al. [4] determined ΔG_t^0 values of the alkali metal chlorides, MCl (M = Li, Na, K, Rb and Cs), from water to several DMSO-water mixtures, by EMF measurements using glass electrodes. The values of ΔG_t^0 of MCl were also reported by Das and Kundu [2], from water to aqueous solutions of DMSO containing 10, 20, 40 and 60 wt.% DMSO, and by Feakins et al. [1] to 40% DMSO, of NaCl to 60% DMSO and of KBr and KI to the 10% mixture. All these EMF measurements were at 25°C.

Although the EMF data reported by Feakins et al. [1] and Das and Kundu [2] were obtained by amalgam electrode measurements, the agreement is less satisfactory. Discrepancies between the reported EMF values (ΔE_m^0) were generally noted (see Table 1); e.g. there is as much as 3.2 mV difference for KCl in 40% DMSO. Further, the data obtained by amalgam electrodes [1,2] are in poor agreement with those by glass electrodes [4]. For

LiCl, the ΔE_m^0 values are 34.7 mV [2], 32.0 mV [1] and 28.6 mV [4], and for CsCl are 56.9 mV [2], 59.3 mV [1] and 51.5 mV [4], in 40% DMSO.

Recently, we reported [7,8] a new procedure to obtain the standard absolute potentials of $H_2 | H^+$, $M | M^+$ and Ag | AgX electrodes in aqueous and non-aqueous protic solvents, as well as the thermodynamics of individual ions, without any extrathermodynamic assumption. As far as electrochemical methods are concerned, amalgam electrodes have been considered for a long time as the most reliable means for the determination of alkali metal ion activity in solution [1,8]. Thus, in order to resolve the discrepancies noted, and as a continuation of previous investigations [6–9] in both aqueous and non-aqueous solvents, EMF measurements were made at 25°C on the double cell

Ag |AgX|MX(m), S|M(Hg)|MX(m), W |AgX|Ag(A)

or a variant of it [1]; where M = Li, Na, K, Rb and Cs for X = Cl and M = K for X = Br and I. S is mixed solvent, W is water and *m* is molality, which varies from 0.02 to 0.20 mol kg⁻¹. In the present paper, the new procedure [8] is applied to the EMF data of cell (A) to verify its use in such aqueous dipolar aprotic media, and to obtain the absolute potentials of $H_2 | H^+$, $M | M^+$ and Ag | AgX electrodes in seven DMSO-water mixtures containing up to 60 wt.% DMSO, and the transfer free energies of halogen acids and alkali metal halides as well as their constituent individual ions from water to the respective DMSO-water solvent mixtures.

EXPERIMENTAL

DMSO and other materials used were as before [1,6,8]. For the EMF measurements the procedure was generally as described previously [1,8], with the modifications reported by Feakins et al. [1] for the solvents containing $\ge 30\%$ DMSO, because of the solubility of the silver halide from the electrodes. The temperature of the measuring cell was carefully maintained at 25 \pm 0.05°C. Experimental details and mathematical treatment of the results have been described earlier [1,8]. Attempts at measurements with cell (A), where X = Br and I, in $\ge 70\%$ DMSO failed; poorly reproducible EMF values were obtained. As reported [1,3], this may be due to the relatively high solubility of these silver halides in such solvents.

RESULTS AND DISCUSSION

The EMF values of cell (A) were treated as before [1,8] to give the standard EMF values, ΔE_m^0 , which are collected in Table 1. These values are accurate to ± 0.2 mV or better. Table 1 also includes values of ΔE_m^0

TABLE	2
-------	---

ICI I							
	LiCI	NaCl	KCl	KBr	KI	RbC1	CsC1
.22236	3.2667	2.9352	3.1472	2.9974	2.7727	3.1475	3.1454
.22162	3.2640	2.9300	3.1417	2.9947	2.7720	3.1421	3.1404
.22104	3.2611	2.9246	3.1360	2.9910	2.7712	3.1364	3.1352
.2210	3.2614	2.9248	3.1364	2.9909	2.7713	3.1365	3.1351
.21998	3.2535	2.9118	3.1222	2.9810	2.7689	3.1232	3.1223
21900	3.2445	2.8964	3.1062	2.9692	2.7663	3.1068	3.1067
21773	3.2347	2.8769	3.0855	2.9559	2.7637	3.0861	3.0862
21564	3.2240	2.8540	3.0615	2.9419	2.7611	3.0615	3.0618
.21176	3.2130	2.8311	3.0359	2.9261	2.7585	3.0339	3.0354
	222236 22162 22104 22210 21998 21900 21773 21564 21176	22236 3.2667 22162 3.2640 22104 3.2611 2210 3.2614 21998 3.2535 21900 3.2445 21773 3.2347 21564 3.2240 21176 3.2130	22236 3.2667 2.9352 22162 3.2640 2.9300 22104 3.2611 2.9246 2210 3.2614 2.9248 21998 3.2535 2.9118 21900 3.2445 2.8964 21773 3.2347 2.8769 21564 3.2240 2.8540 21176 3.2130 2.8311	22236 3.2667 2.9352 3.1472 22162 3.2640 2.9300 3.1417 22104 3.2611 2.9246 3.1360 2210 3.2614 2.9248 3.1364 21998 3.2535 2.9118 3.1222 21900 3.2445 2.8964 3.1062 21773 3.2347 2.8769 3.0855 21564 3.2240 2.8540 3.0615 21176 3.2130 2.8311 3.0359	22236 3.2667 2.9352 3.1472 2.9974 22162 3.2640 2.9300 3.1417 2.9947 22104 3.2611 2.9246 3.1360 2.9910 2210 3.2614 2.9248 3.1364 2.9909 21998 3.2535 2.9118 3.1222 2.9810 21900 3.2445 2.8964 3.1062 2.9692 21773 3.2347 2.8769 3.0855 2.9559 21564 3.2240 2.8540 3.0615 2.9419 21176 3.2130 2.8311 3.0359 2.9261	22236 3.2667 2.9352 3.1472 2.9974 2.7727 22162 3.2640 2.9300 3.1417 2.9947 2.7720 22104 3.2611 2.9246 3.1360 2.9910 2.7712 2210 3.2614 2.9248 3.1364 2.9909 2.7713 2210 3.2614 2.9248 3.1222 2.9810 2.7689 21998 3.2535 2.9118 3.1222 2.9810 2.7689 21900 3.2445 2.8964 3.1062 2.9692 2.7663 21773 3.2347 2.8769 3.0855 2.9559 2.7637 21564 3.2240 2.8540 3.0615 2.9419 2.7611 21176 3.2130 2.8311 3.0359 2.9261 2.7585	22236 3.2667 2.9352 3.1472 2.9974 2.7727 3.1475 22162 3.2640 2.9300 3.1417 2.9947 2.7720 3.1421 22104 3.2611 2.9246 3.1360 2.9910 2.7712 3.1364 2210 3.2614 2.9248 3.1364 2.9909 2.7713 3.1365 21998 3.2535 2.9118 3.1222 2.9810 2.7689 3.1232 21900 3.2445 2.8964 3.1062 2.9692 2.7633 3.0861 21773 3.2347 2.8769 3.0855 2.9559 2.7637 3.0861 21564 3.2240 2.8540 3.0615 2.9419 2.7611 3.0615 21773 3.2347 2.8769 3.0615 2.9419 2.7611 3.0615

Values of E_m^0 (V) of cells (B) and (C) in dimethyl sulphoxide-water mixtures at 25°C, and those of Feakins et al. [1] in the 10% DMSO mixture

reported earlier [1,2,4], for comparison. As would be expected, the best agreement is between the present results and those obtained with amalgam electrodes [1,2]. Good agreement is also observed between the two sorts of electrodes in several places. For CsCl, the ΔE_m^0 values obtained with glass electrodes [4] are appreciably lower than those of amalgam electrodes; Smits et al. [4] reported that their data for this electrolyte (CsCl) are also poorly reproducible. All the precautions taken over the dissolution of silver and other halides make ours the more reliable data.

The value of ΔE_m^0 is the difference between the E_m^0 values of cell (B)

M | MX,S | AgX | Ag

in water and in the DMSO-water solvent mixture, i.e.,

$$\Delta E_m^0 = {}^{\mathsf{w}} E_m^0 - {}^{\mathsf{s}} E_m^0 \tag{1}$$

(B)

The values of ${}^{w}E_{m}^{0}$ of cell (B) have been obtained recently [8], and thus, those of ${}^{s}E_{m}^{0}$ could be computed in each of the DMSO-water mixtures for cell (B) containing MX = LiCl, NaCl, KCl, KBr, KI, RbCl and CsCl. These are recorded in Table 2, together with earlier results [6] for HCl in DMSO-water mixtures, obtained from EMF measurements on cell (C).

$$Pt |H_2 (g, 1 atm)|HX, S|AgX|Ag$$
(C)

The new procedure [7,8] can be applied to the E_m^0 values of cells (B), containing KCl, KBr and KI, in each solvent (Table 2). This procedure depends on the fact that there are generally two possibilities (I and II) for the variation of the electrode potential with the radius of the solvated ion, r, on whose activity the potential depends, i.e., either the oxidation potential

varies directly with r (case I), or the reduction potential varies inversely with r (case II). Therefore the standard EMF (E_m^0) of a cell, which is the difference between two oxidation or reduction potentials, is given as either

$$E_m^0 = {}_{\rm L}^{\rm ox} E_m^0 - {}_{\rm R}^{\rm ox} E_m^0 = a_1^0 r^+ - a_1^0 r^-$$
 (2-I)
or

$$E_m^0 = {}^{\rm red}_{\rm R} E_m^0 - {}^{\rm red}_{\rm L} E_m^0 = a_2^0 / r^- - a_2^0 / r^+$$
(2-II)

where r^+ and r^- are the radii of solvated cations and anions, respectively, and all the symbols have their usual significance [7,8]. Therefore, the cell EMF (E_m^0) is proportional to the radius of the solvated ion which is being varied in a series of electrolytes having a common ion [7,8].

Standard absolute electrode potential

According to eqns. (2-I) and (2-II), the plot of E_m^0 of cells (B), containing KCl, KBr and KI, against r^{-} (method I) or against $1/r^{-}$ (method II) gave almost perfect straight lines, in each solvent. The least-squares results of applying eqns. (2-1) and (2-11) to the E_m^0 values of cells (B) in DMSO-water solvent mixtures at 25°C, are summarized in Tables 3 and 4, respectively. As previously [7,8], the standard absolute potential of the K $|K^+|$ ($_L E_m^0$) and Ag |AgX ($_{R}E_{m}^{0}$) electrodes, the radius of the solvated K⁺ ion (r⁺) and thus its solvation extent (S_e) , in the standard state, have been computed by both methods I and II. As expected [7,8], different values based on different, oxidation or reduction, potential scales are obtained. Of course, only one set of data should be credited. However, it is evident [7-9] that method I should be applied to the EMF data for the determination of absolute electrode potentials as well as thermodynamics of individual ions in solution, and thus its set of data should be credited. All previous results [7–9] gave evidence that the plots of standard transfer free energy or entropy against $1/r^{-}$, used earlier [1-3] to obtain the thermodynamic properties of individual ions, cannot be accepted. Nevertheless, the results of calculations by both methods I and II are considered in the present work, in order to provide further proof for these conclusions.

Using the known computed values of the standard absolute potential of the Ag|AgCl electrode, in each solvent (Tables 3 and 4), those of $H_2|H^+$, Li|Li⁺, Na|Na⁺, Rb|Rb⁺ and Cs|Cs⁺ electrodes, containing HCl, LiCl, NaCl, RbCl and CsCl, respectively, could be obtained from the E_m^0 values of cells (C) and (B) (Table 2). Thus, the radii of the solvated cations (r^+) and their solvation extent (S_e), as well as the individual ionic contributions to ΔG_t^0 values of electrolytes, in each solvent, were calculated as before [7,8]. These are included in Tables 3 and 4.

The results in Tables 3 and 4 reflect the following interesting features.

(1) In all solvents, eqn. (2-I) fits better than eqn. (2-II), as indicated by the correlation coefficients (corr). Further, the differences (Δ , mV), between

						tion of the second s				
		DMSO (w	t.%)							
		5	10	10[1]	20	30	40	50	60	
- Corr (10 ⁻²)		9666.66	9666.66	6666.66	100.0000	99.9994	99.9995	99,9998	6866.66	L.
∆(mV)	KCI	- 0.3	-0.4	-0.2	0.0	+ 0.4	+0.3	-0.2	- 0.5	
~	KBr	+ 0.6	+ 0.6	+ 0.4	+ 0.1	-0.7	-0.6	+0.4	+ 0.8	
	KI	-0.2	- 0.2	-0.1	0.0	+ 0.3	+ 0.2	-0.1	-0.3	
$a_1^0 (10^{10} \text{ V m}^{-1})$		1.0566	1.0426	1.0433	1.0095	0.9708	1616.0	0.8585	0.7930	
r ⁺ (10 ⁻¹⁰ m)	Н	2.020	2.022	2.022	2.028	2.036	2.047	2.061	2.077	
~	Li	4.899	4.938	4.936	5.033	5.152	5.329	5.565	5.862	
	Na	4.583	4.615	4.613	4.694	4.794	4.940	5.134	5.380	
	K	4.784	4.818	4.816	4.903	5.009	5.167	5.376	5.639	
	Rb	4.784	4.818	4.816	4.904	5.010	5.168	5.376	5.636	
	Cs	4.782	4.817	4.815	4.903	5.010	5.168	5.376	5.638	
S, (10 ⁻¹⁰ m)	Li	4.30	4.34	4.34	4.43	4.55	4.73	4.97	5.26	
	Na	3.63	3.67	3.66	3.74	3.84	3.99	4.18	4.43	
	K	3.45	3.49	3.49	3.57	3.68	3.84	4.05	4.31	
	Rb	3.30	3.34	3.34	3.42	3.53	3.69	3.90	4.16	
	ů,	3.09	3.13	3.12	3.21	3.32	3.48	3.69	3.95	

ΔG_t^0 values on the		
r mixtures at 25°C		
/l sulphoxide-water		
sells (B) in dimethy		
ie E_m^0 values of c		
g eqn. (2-I) to th		
results of applyin		
The least-squares	nolal scale	

TABLE 3

1.6471	4.6483	4.2664	4.4717	4.4692	4.4707	1.4353	1.5464	1.7129	49320	53549	58460	59010	59251	58913	48347	52087	57696	
1.7695	4.7779	4.4079	4.6156	4.6154	4.6157	1.5539	1.6741	1.8544	37508	41045	44807	45126	45145	44923	36910	39765	44048	
1.8813	4.8983	4.5405	4.7487	4.7497	4.7498	1.6636	1.7922	1.9853	26723	29428	32014	32284	32187	31985	26327	28364	31418	
1.9761	5.0016	4.6535	4.8629	4.8639	4.8638	1.7571	1.8930	2.0968	17580	19461	21111	21265	21169	20985	17306	18645	20653	
2.0471	5.0806	4.7389	4.9494	4.9503	4.9494	1.8271	1.9685	2.1805	10723	11839	12871	12919	12832	12726	10544	11360	12584	
2.1095	5.1499	4.8133	5.0251	5.0250	5.0236	1.8885	2.0345	2.2536	4707	5152	5693	5615	5625	5567	4628	4987	5524	
2.1082	5.1483	4.8118	5.0235	5.0236	5.0224	1.8872	2.0331	2.2521	4831	5307	5837	5770	5760	5683	4754	5121	5673	
2.1341	5.1765	4.8425	5.0545	5.0546	5.0529	1.9125	2.0604	2.2823	2332	2586	2875	2779	2769	2740	2311	2490	2758	
Н	Li	Na	K	Rb	Cs	C	Br	Ι	Н	Li	Na	K	Rb	ů	G	Br	I	
$_{\rm L}^{\rm ox}E_m^0$ (V)						${}^{ m ox}_{ m R} E_m^0$ (V)			ΔG_t^0	$(J mol^{-1})$								

		DMSO (wi	1.%)							1
		5	10	10[1]	20	30	40	50	60	
Corr (10 ⁻²)		99.8646	99.8638	99.8699	99.8765	99.8950	99.8933	99.8677	99.8538	1
Δ (mV)	KCI	- 6.2	- 6.2	- 6.0	- 5.7	- 5.0	-4.8	- 5.0	-4.8	
	KBr	+ 11.1	+11.1	+10.8	+10.2	+ 9.0	+ 8.6	+ 9.0	+ 8.7	
	KI	-4.9	- 4.9	- 4.8	- 4.5	4.0	- 3.8	-4.0	- 3.9	
$a_2^0 (10^{-10} \text{ V m})$		4.1438	4.0890	4.0920	3.9594	3.8083	3.6056	3.3670	3.1097	
r^{+} (10 ⁻¹⁰ m)	Н	2.004	2.006	2.006	2.012	2.020	2.032	2.047	2.064	
	Li	4.252	4.081	4.089	3.714	3.339	2.901	2.469	2.080	
	Na	6.469	6.144	6.162	5.467	4.806	4.075	3.388	2.794	
	K	4.827	4.630	4.641	4.211	3.781	3.283	2.791	2.351	
	Rb	4.860	4.661	4.673	4.232	3.798	3.296	2.803	2.363	
	C	4.869	4.667	4.680	4.236	3.798	3.295	2.802	2.361	
$S_{\rm c}$ (10 ⁻¹⁰ m)	Ľ	3.65	3.48	3.49	3.11	2.74	2.30	1.87	1.48	
	Na	5.52	5.19	5.21	4.52	3.86	3.12	2.44	1.84	
	X	3.50	3.30	3.31	2.88	2.45	1.95	1.46	1.02	
	Rb	3.38	3.18	3.19	2.75	2.32	1.82	1.32	0.88	
	C	3.18	2.98	2.99	2.55	2.11	1.61	1.11	0.67	

The least-squares results of applying eqn. (2-II) to the E_m^0 values of cells (B) in dimethyl sulphoxide-water mixtures at 25° C, ΔG_1^0 values on the molal scale

TABLE 4

$-red E_m^0$ (V)	Η	- 2.0678	- 2.0381	- 2.0398	- 1.9675	-1.8850	-1.7743	-1.6446	-1.5063
	Li	0.9746	1.0020	1.0006	1.0660	1.1405	1.2427	1.3638	1.4949
	Na	0.6406	0.6655	0.6640	0.7243	0.7924	0.8849	÷ 0,9938	1.1130
	ч	0.8585	0.8831	0.8816	0.9404	1.0072	1.0983	1.2063	1.3227
	Rb	0.8527	0.8773	0.8757	0.9357	1.0028	1.0941	1.2013	1.3158
	Cs	0.8510	0.8761	0.8743	0.9348	1.0027	1.0942	1.2016	1.3173
$^{ m red}_{ m R} E_m^0$ (V)	Ū	2.2894	2.2591	2.2608	2.1875	2.1040	1.9920	1.8602	1.7181
	Br	2.1250	2.0969	2.0985	2.0305	1.9530	1.8490	1.7266	1.5947
	I	1.9184	1.8930	1.8944	1.8331	1.7631	1.6692	1.5588	1.4397
ΔG_1^0	Н	2237	5105	4941	11909	19872	30555	43073	56411
$(J mol^{-1})$	Li	1977	4622	4488	10795	17984	27844	39531	52182
	Na	1697	4101	3958	9772	16344	25267	35777	47280
	ч	2364	4733	4597	10261	16713	25499	35921	47150
	Rb	1803	4178	4025	9811	16286	25094	35440	46489
	Cs	1832	4255	4083	6917	16469	25296	35662	46827
	Ū	2836	5760	5598	12666	20724	31529	44249	57961
	Br	2631	5347	5197	11757	19236	29266	41072	53800
	I	2376	4827	4691	10614	17366	26420	37079	48569
$a_2^0/a_1^0(10^{-20} \text{ m}^2)$		3.9218	3.9218	3.9220	3.9223	3.9230	3.9229	3.9219	3.9214

the original E_m^0 values and those calculated by eqn. (2), reflect the extent of this correlation. Thus, although only three points are available, the correlation coefficients and values of Δ always indicate [7–9] that the variables are very closely related in the wider range ($r^- = 1.81-2.16$) of case I than in the narrower range ($1/r^- = 0.463-0.552$) of case II.

(2) The ratio (a_2^0/a_1^0) is constant (3.922 ± 0.001) and independent of the solvent type and composition; the same result has been obtained in several solvent systems [7–9] including both protic and aprotic, partially aqueous and non-aqueous solvents. Thus, a_1^0 and a_2^0 appear to be universal constants for all electrodes, dependent only on the temperature and the medium. The values of these constants decrease with increasing either the temperature or the organic content of the solvent system [7–9].

(3) While the radius of the solvated proton calculated by both methods I and II ($r_{\rm I}^+ > r_{\rm II}^+$, in any solvent) increases with increasing DMSO content in the solvent, the radii of the solvated alkali metal cations and thus their solvation extent calculated by method I increase, but those calculated by method II decrease. As the water content of the solvent decreases, the water molecules in the solvation sheath around the ion are gradually replaced by the larger more polar DMSO molecules [2]. Therefore, the increasing values of r^+ and S_c , obtained by method I, are as expected. This may be so in view of the results obtained by Cowie and Toporowski [10], on the basis of viscometric, densimetric, heat of mixing and refractive index measurements, indicating that there is a greater degree of association in DMSO-water mixtures than in water alone. This is explained in terms of the polar sulphoxide group, in which the negatively charged oxygen should form hydrogen bonds with the water molecules, and therefore the hydrogen bonds between H₂O and DMSO in the mixtures are stronger than the H₂O-H₂O bonds [10]. Also, NMR measurements [11] indicate that the stronger H₂O-DMSO interactions are present in the water-rich mixtures. The results in Table 3 (r^+ and S_e values) are confirmed by these observations [10,11]. These results lend further support to the validity and general applicability of method I in aqueous mixtures of dipolar aprotic solvents. Thus, the protons have to be more solvated in the mixed solvent than in water, and much more solvated by increasing DMSO content in the solvent, as indicated by the results of both methods I and II. The solvation of protons in aqueous aprotic solvents could be compared with that in aqueous protic solvents, where the protons become gradually less solvated (r^+ values decrease) on the successive addition of methanol [7] or glycols [8,9] to the aqueous medium; minimum solvation is always [7-9] reached in the non-aqueous media.

(4) The successive substitution of water dipoles by the larger sized DMSO dipoles in the solvation sheath, on gradual addition of DMSO to the solvent, is further supported by another very interesting feature seen in Table 3. In any solvent, the extent of solvation increases in the expected

order: $Cs^+ < Rb^+ < K^+ < Na^+ < Li^+$, and the Li⁺ ion is always highly solvated. On the other hand, results of method II (Table 4) show that the expected order is inverted for Li⁺ and Na⁺ ions. As it is well known [12,13], this is not the case. Similar results were also obtained for the alkali metal ions in methanol- [7] and glycol-water [8,9] solvent systems. These results shed more light on the inapplicability of method II for such calculations, and should confer extra confidence in the validity and, hence, greater reliability of the data evaluated by method I.

(5) As the DMSO content of the solvent increases, the oxidation potentials of both left and right electrodes decrease, whereas the reduction potentials decrease positively for the right electrode and negatively for the left one, as indicated by the results of methods I and II in Tables 3 and 4, respectively. In any solvent, as would be expected [7–9], the standard absolute oxidation potentials calculated by method I increase in the order: ${}^{\text{ox}}E_m^0$ (Ag |AgCl) < ${}^{\text{ox}}E_m^0$ (Ag |AgBr) < ${}^{\text{ox}}E_m^0$ (H₂ |H⁺) < ${}^{\text{ox}}E_m^0$ (Ag |AgI), whereas the standard absolute reduction potentials calculated by method II decrease in the same order. On the other hand, the irregular order of variation of the standard absolute potentials of the alkali metal electrodes, from Li |Li⁺ to Cs |Cs⁺ in any solvent, is dictated by the extent of solvation of the alkali metal ions, and thus by the radii of solvated cations.

Further, the standard free energy change associated with any electrode (half-cell) reaction could be obtained as $-{}_{\rm E}E_m^0F$, where F is the faraday and ${}_{\rm F}E_m^0$ is the standard absolute electrode potential. By coupling the

TABLE 5

.1.							
	DMSO (w	rt.%)					
	5	10	20	30	40	50	60
HCl							
This work	0.2216	0.2210	0.2200	0.2190	0.2177	0.2156	0.2118
[1]		0.2210		_	—		-
[3]	_	0.2210	0.2199	_	0.2177	_	0.2117
[5]	-	-	0.2205	-	0.2185	-	-
HBr							
This work	0.0737	0.0751	0.0787	0.0831	0.0891	0.0954	0.1007
[1]	_	0.0750	-	_	—	-	
[3]	-	0.0736	0.0765	-	0.0896	-	0.1040
HI							
This work	-0.1482	-0.1439	-0.1333	-0.1208	-0.1040	-0.0848	-0.0658
[1]	_	-0.1441	-	_	-	_	-
[3]	-	-0.1436	-0.1343	_	- 0.1059	-	-0.0653

Values of E_m^0 (V) of cells (C) in dimethyl sulphoxide-water mixtures at 25°C, and those reported earlier [1,3,5]

TABLE	6
-------	---

	DMSO	(wt.%)						
	5	10	10 [1]	20	30	40	50	60
HC1	21	77	79	179	274	396	598	973
HBr	-158	- 290	-280	- 637	-1065	-1641	-2257	-2767
HI	- 426	- 842	-817	-1861	-3073	- 4695	- 6540	- 8376
LiCl	275	553	524	1295	2155	3101	4135	5202
LiBr	96	186	165	479	816	1064	1280	1462
LiI	-172	- 366	- 372	- 745	-1192	-1990	- 3003	-4147
NaCl	564	1083	1065	2327	3805	5687	7897	10113
NaBr	385	716	706	1511	2466	3650	5042	6373
NaI	117	164	169	287	458	596	759	764
KC1	468	1016	987	2375	3959	5957	8216	10663
KBr	289	649	628	1559	2620	3920	5361	6923
KI	21	97	91	335	612	866	1078	1314
R bCl	458	1006	997	2288	3863	5860	8235	10904
RbBr	279	639	638	1472	2524	3823	5380	7164
RbI	11	87	101	248	516	769	1097	1555
CsC1	429	929	939	2182	3679	5658	8013	10566
CsBr	250	562	580	1366	2340	3621	5158	6826
CsI	-18	10	43	142	332	567	875	1217

Standard transfer free energies (J mol⁻¹) of halogen acids and alkali metal halides from water to dimethyl sulphoxide-water mixtures at $25^{\circ}C$

standard absolute potentials of $H_2 | H^+$ or $M | M^+$ electrodes with those of Ag |AgX electrodes, using eqn. (2-I), the values of E_m^0 for cells (C) or (B), containing HX or MX electrolytes, respectively, could be computed. The values so computed at 25°C for HX acids, for example, are given in Table 5, together with those calculated from the data of Feakins et al. [1] for the 10% DMSO mixture and the earlier reported values [3,5], for comparison. Agreement is generally seen in several places. This supports the general applicability of the new procedure [8] to the EMF data of cells (A), and hence the reliability of the evaluated results (Tables 2, 3, 5 and 6).

However, it should be pointed out that Khoo [3] determined E_m^0 values of cell (C) for X = Br or I by plotting $(E_{HX} - E_{HCI})$ against m, where E_{HX} and E_{HCI} are the EMF's of buffered cells with X = Br or I and X = Cl, respectively, at the same value of m. The linear plots were extrapolated to m = 0 to obtain $(E_{m,HX}^0 - E_{m,HCI}^0)$. Then, using known values of $E_{m,HCI}^0$, those of $E_{m,HX}^0$ were calculated [3]. However, the errors in such values may increase in the successive steps of treatment of EMF data. Thus, taking into account the combined precision limits of the results of Khoo [3], the agreement between his E_m^0 values and the new ones is fairly close in several places. The

assumption that the activity coefficient term varies linearly with m was made by Khoo [3] in order to obtain E_m^0 values of cell (C) for X = Br and I. Since our new E_m^0 values are obtained in various DMSO-water mixtures, without any assumptions, these should be preferred.

In Table 5, it is notable that while the value of E_m^0 for HCl decreases, that for HBr or HI increases with increasing DMSO content in the solvent. Nevertheless, the standard absolute potentials of the H₂|H⁺ or Ag|AgX electrodes all decrease in the same direction. Since the value of E_m^0 is the difference between those of $_{\rm L}E_m^0$ and $_{\rm R}E_m^0$ (eqn. 2-I), the rate of variation of each will determine the net rate of variation of E_m^0 with solvent composition. This may explain the maximum observed at around 60% DMSO for the E_m^0 values of HBr obtained by Khoo [3].

Standard transfer Gibbs free energies of individual ions

Assessment of ΔG_t^0 for the individual ion is necessary in order to draw meaningful conclusions from these results and hence about ion-solvent interactions in these solvents. Individual ion values of ΔG_t^0 are given in Tables 3 and 4. These are accurate to $\leq 40 \text{ J mol}^{-1}$, and show a qualitative resemblance to other mixed solvent systems [7–9] in that all the values are positive and increase, i.e., ion transfer becomes less favourable with increasing organic content of the solvent.

Although the transfer free energies calculated by method I are based on the oxidation potential scale, whereas those calculated by method II are based on the reduction potential scale, the transfer free energies of ions from water to mixed solvents show the same trend with increasing proportions of DMSO in the solvent. For any ion, absence of any break at least within the present limit of solvent composition indicates [2] that either no appreciable structural changes of the solvents occur within this range during the transfer process of the ions, as observed for other properties [2], or if any, these are compensated in a property such as ΔG_t^0 .

In any mixed solvent, the values of ΔG_t^0 for cations do not follow such a regular order. As in the methanol-water mixtures [7], ΔG_t^0 values, calculated by method I (Table 3), rise somewhat sharply from H⁺ through Li⁺ to Na⁺ and fall from Rb⁺ to Cs⁺ with a maximum between Na⁺ and Rb⁺ depending on the solvent composition. While the shifting of the maximum to Rb⁺ occurs at around 90% methanol in the methanol-water system, it occurs as early as 50% DMSO in the DMSO-water system. Nevertheless, the essential similarity in the profiles of ΔG_t^0 against S_e points to a common cause for the resulting behaviour of these simple ions in the two solvent systems. On the other hand, although the behaviour of ΔG_t^0 values calculated by method II in the methanol-water system [7] is opposite where there is a minimum between Na⁺ and Rb⁺, depending on solvent composition, characteristic behaviour is generally seen for ΔG_t^0 values evaluated by

method II (Table 4) in the DMSO-water system. Two minima at Na⁺ and Rb⁺ and a maximum at K⁺, are observed in all solvents, except the 60% DMSO solvent where a minimum is observed at Rb⁺. This irregular trend of variation of ΔG_t^0 values may lend further proof against the validity and applicability of method II for calculations of the thermodynamics of individual ions.

For anions, in any solvent, the values of ΔG_t^0 calculated by method I increase in the order: ΔG_t^0 (Cl⁻) < ΔG_t^0 (Br⁻) < ΔG_t^0 (I⁻), whereas those calculated by method II decrease in that order. Similar behaviour was observed in several solvent systems [7–9].

Standard transfer Gibbs free energies of halogen acids and alkali metal halides

The values of ΔG_t^0 for halogen acids, as well as alkali metal halides, could be obtained by coupling the transfer free energies of cations with those of anions, i.e., from the differences between those for the ion constituents, both based on the same type of oxidation or reduction potential scale [7–9], in any solvent. The values of ΔG_t^0 so calculated from the results of method I at 25°C, by eqn. (3), in various DMSO-water mixtures, are collected in Table 6.

$$\Delta G_t^0(\mathrm{HX \text{ or } MX}) = \Delta G_t^0(\mathrm{H^+ \text{ or } M^+}) - \Delta G_t^0(\mathrm{X^-})$$
(3)

It is interesting to note from Table 6 that while ΔG_t^0 values for HCl become increasingly positive, those for HBr and HI become increasingly negative as the proportion of DMSO increases. Also, for the alkali metal halides, the ΔG_t^0 values for LiI become increasingly negative (and a slight negative minimum is observed for CsI at around 5% DMSO) whilst those for the rest become increasingly positive, with increasing the DMSO content in the solvent. Further, the ΔG_t^0 values become increasingly negative in the order HCl, HBr, HI for transfer to any solvent. This behaviour is reflected in eqn. (3), since the values of ΔG_t^0 for the halide ion increases from Cl⁻ through Br⁻⁻ to I⁻. The decreasing order of ΔG_t^0 values from MCl through MBr to MI, in any solvent, can thus be explained in the same manner. However, in view of eqn. (3), it is notable that the usual tests of additivity of free energies made by Feakins et al. [1,13] could be performed between our results for potassium halides, for example, and those for halogen acids, in any solvent. The difference $\Delta G_t^0(\mathbf{KX}) - \Delta G_t^0(\mathbf{HX})$, or $\Delta G_t^0(\mathbf{K}^+) - \Delta G_t^0(\mathbf{H}^+)$, is constant within the experimental error.

The net value of ΔG_t^0 of HX or MX is determined by the rate of increasing positive values of ΔG_t^0 , of both positive and negative ions, with increasing DMSO concentration in the solvent. For the alkali metal halides, the ΔG_t^0 values for the transfer of LiI are all negative and decrease, while for transfers of all other MX they are all positive (except a negative minimum for CsI at around 5% DMSO) and increase with increasing proportion of

TABLE 7

	DMSO (wt.%)					
	0	10	20	40	60	
Results of method I - Corr (10^{-2})	99.9992	99.9988	99.9985	99.9989	99.9919	
Δ (mV)						
HCl	-0.5	-0.6	-0.7	+0.5	+1.2	
HBr	+0.9	+1.0	+1.1	-0.9	-2.0	
HI	-0.4	-0.4	-0.4	+0.4	+0.8	
$a_1^0 (10^{10} \text{ V m}^{-1})$	1.0701	1.0411	1.0114	0.9251	0.7926	
r^+ (10 ⁻¹⁰ m)	2.017	2.022	2.027	2.046	2.079	
$^{\mathrm{ox}}_{\mathrm{L}}E^{0}_{m}$ (V)	2.1587	2.1048	2.0498	1.8926	1.6475	
${}^{\mathrm{ox}}_{\mathrm{R}}E^0_m$ (V)						
X = Cl	1.9368	1.8844	1.8306	1.6744	1.4346	
Br	2.0866	2.0302	1.9721	1.8039	1.5456	
I	2.3114	2.2488	2.1845	1.9982	1.7120	
$\Delta G_{\mathfrak{t}}^0(\mathrm{H^+})$	-	5199	10511	25675	49323	
$\Delta G_{\mathrm{t}}^{0}(\mathrm{X}^{-})$						
$\mathbf{X} = \mathbf{C}1$	_	5055	10255	25322	48459	
Br	-	5446	11048	27281	52207	
Ι	-	6033	12238	30219	57829	
Results of method II						
$Corr(10^{-2})$	99.8974	99.9012	99.9041	99.8540	99.8075	
Δ (mV)						
HCl	+ 5.5	+ 5.2	+ 5.0	+ 5.7	+ 5.6	
HBr	- 9.8	- 9.4	- 9.0	-10.1	-10.0	
HI	+4.4	+4.2	+ 4.0	+ 4.5	+4.4	
$a_2^0 (10^{-10} \text{ V m})$	4.1980	4.0846	3.9679	3.6276	3.1069	
r^+ (10 ⁻¹⁰ m)	2.007	2.012	2.017	2.037	2.072	
${}^{\rm red}_{\rm L} E_m^0 ({\rm V})$	2.0915	2.0305	1.9673	1.7809	1.4992	
$^{\rm red}_{\rm R} E_m^0$ (V)						
X = Cl	2.3193	2.2567	2.1922	2.0042	1.7165	
Br	2.1528	2.0947	2.0348	1.8603	1.5933	
Ι	1.9435	1.8910	1.8370	1.6794	1.4384	
$\Delta G_{\mathrm{t}}^{\mathrm{0}}$ (H ⁺)	_	5885	11977	29970	57141	
$\Delta G_{\rm t}^0({f X}^-)$						
$\mathbf{X} = \mathbf{C}1$	_	6044	12264	30407	58166	
Br	<u></u>	5610	11384	28224	53990	
I	-	5065	10277	25480	48741	
$a_2^0/a_1^0 (10^{-20} \text{ m}^2)$	3.9231	3.9233	3.9234	3.9214	3.9199	

The least-squares results of applying eqn. (2) to the previous EMF data in DMSO-water mixtures at 25°C reported by Khoo [3], ΔG_t^0 (J mol⁻¹)

DMSO in the solvent. However, this behaviour indicates that the combined effects of the solvent and solute properties disfavour the transfer of HCl or any MX (except LiI to any solvent and CsI to 5% DMSO) while they increasingly favour the transfer of HBr, HI and LiI. This behaviour is quite different from that observed for transfers of the halogen acids and LiI from water to other aqueous organic solvents [1-9], and is reported earlier [3].

Petrella et al. [14] summarized reports on the structural properties of DMSO-water mixtures, and showed that there is no general agreement on the structural characteristics of these solvents. Results of some measurements indicate that DMSO is only weakly hydrophobic and scarcely affects water structure, while to the contrary, others show that DMSO in water forms strong structures; contrasting results suggest that DMSO breaks structure in water [14]. If the transfer behaviour of the individual ions is compared with that in methanol-water mixtures [7] at the corresponding solvent composition, the smaller positive values of ΔG_t^0 obtained in methanol-water solvents [7] suggest that the ion affinity of these solvents is greater than in DMSO-water solvents. The transfer behaviour of HX or MX shows a different trend. The larger positive values of ΔG_t^0 for HX or MX, obtained in methanol-water solvents [7], show that the affinity of these solvents.

The new procedure and previous EMF data in DMSO-water mixtures

The new procedure of determination of absolute electrode potential, as well as transfer free energies of individual ions, has also been applied to previous EMF data for the halogen acids in DMSO-water mixtures, reported by Khoo [3]. The least-squares results of applying eqns. (2-I) and (2-II) to the EMF data [3] are recorded in Table 7. However, the same interesting features and trends seen in Tables 3 and 4 are again observed, leading to the same conclusions. Thus, there is every reason that method I should be applied to the EMF data for determination of absolute electrode potentials as well as thermodynamic properties of individual ions in various aqueous solutions of both protic and aprotic solvents, and that its set of data should be credited. Further, the interest, validity and general applicability of the new procedure [7,8] in various solvents are demonstrated.

ACKNOWLEDGEMENT

The authors express their appreciation to Mrs. Laila Abu Elela for fruitful suggestions and many helpful discussions.

REFERENCES

- 1 D. Feakins, B.E. Hickey and P.J. Voice, J. Chem. Soc., Faraday Trans. 1, 75 (1979) 907.
- 2 A.K. Das and K.K. Kundu, J. Chem. Soc., Faraday Trans. 1, 70 (1974) 1452.
- 3 K.H. Khoo, J. Chem. Soc. A, (1971) 1177, 2932.
- 4 R. Smits, D.L. Massart, J. Juillard and J.P. Morel, Electrochim. Acta, 21 (1976) 437.
- 5 J.P. Morel, Bull. Soc. Chim. Fr., (1967) 1405.
- 6 M.M. Elsemongy and I.M. Kenawy, Z. Phys. Chem. Neue Folge, 130 (1982) 37.
- 7 M.M. Elsemongy, Thermochim. Acta, 80 (1984) 239.
- 8 M.M. Elsemongy and F.M. Reicha, Thermochim. Acta, 103 (1986) 371; 106 (1986) 309.
- 9 M.M. Elsemongy, Thermochim. Acta, 103 (1986) 387; 108 (1986) 133.
- 10 J.M.G. Cowie and P.M. Toporowski, Can. J. Chem., 39 (1961) 2240.
- 11 K.J. Packer and D.J. Tomlinson, Trans. Faraday Soc., 67 (1971) 1302.
- 12 R.G. Bates, in J.F. Coetzee and C.D. Ritchie (Eds.), Solute-Solvent Interactions, Dekker, New York, 1969.
- 13 D. Feakins, in F. Franks (Ed.), Physico-Chemical Processes in Mixed Aqueous Solvents, Heinemann, London, 1969, and references therein.
- 14 G. Petrella, M. Petrella, M. Castagnolo, A. Dell' Atti and A. De Giglio, J. Solution Chem., 10 (1981) 129.